Department of Chemistry, Osmania University, Hyderabad-500 007, India
Fax: +914023095438; E-mail: reddyppou@yahoo.co.in
\dagger Present Address: Research and Development, Dr. Reddys Laboratories Ltd., API, Unit-IV, Plot No. 9/A, Phase-III, IDA, Jeedimetla, Hyderabad-500 055, India

Received July 1, 2004

Abstract

A facile approach to pyrazolo[4,3-e][1,4]diazepin-5,8-diones and pyrazolo[4,3-e]pyrrolo[1,2-a][1,4]-diazepin-5,10-diones is reported. Strategy involved the utility of α-amino acid as a three-atom segment in the construction of diazepine skeleton on the preformed pyrazole ring.

J. Heterocyclic Chem., 42, 675 (2005).

Introduction.
Immense pharmacological importance of [1,4]benzodiazepines [1] led to a great deal of work on various facets of heteroannelated[1,4]diazepines. Thus, [1,4]diazepines fused to thiophenes [2], imidazoles [3], pyrroles [4], isoxazoles [5] and pyrazoles [6-7] were synthesized and investigated for their pharmacological activity.

Our current interest in fused pyrazoles coupled with above findings prompted us to plan the synthesis of pyra-zolo[4,3-e][1,4]diazepine derivatives. Earlier, Dewald and co-workers [6] reported the synthesis of 1,3/2,3-dialkyl-4,6-dihydro-8-aryl pyrazolo[4,3-e][1,4]diazepine-5-ones by making use of 1,3/2,3-dialkyl-4-aminopyrazolyl aryl ketones as intermediates. In the present paper, we describe the synthesis of various new fused pyrazolodiazepine derivatives through a short synthetic sequence. Utility of α-amino acids as a three atom segment in the construction of diazepine skeleton on the preformed pyrazole ring served as a facile route to pyrazolo[4,3-e][1,4]diazepines. 1-Alkyl-4-nitro-3-n-propyl pyrazolyl-5-carboxylic acid [8] 1a/1b was chosen as the precursor.

Results and Discussion.
Reaction of 1a with thionyl chloride and subsequent condensation of the resulting acid chloride with glycine in $10 \% \mathrm{KOH}$ solution afforded 1-methyl-3-n-propyl-1H-pyrazolyl-5-carboxamido)acetic acid 2a. Treatment of 2a with hydrogen in the presence of Raney nickel at 75 psi pressure directly furnished 1-methyl-3-n-propyl-1,4,5,6,7,8-hexahydropyrazolo[4,3-e][1,4]diazepin-5,8dione 3a in 73% yield. The structural assignment of 3a was based on its ir, mass, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C} \mathrm{nmr}$ spectral data.

In the mass spectrum of $\mathbf{3 a}$ the highest peak at m/e 222 corresponds to the molecular ion. Presence of two distinct amide functions in the compound is deduced from the ir spectrum [KBr, 3178, $3070 \mathrm{~cm}^{-1}$ (two amide NH); 1689, $1669 \mathrm{~cm}^{-1}$ (amide carbonyls)]. ${ }^{1} \mathrm{H} \mathrm{nmr}$ spectrum (DMSOd_{6}) displayed two amide proton signals at $\delta 10.1$ (br s, 1H)
and $\delta 8.3(\mathrm{t}, 1 \mathrm{H})$ while doublet at $\delta 3.6$ integrating for two protons is assignable to glycine CH_{2} group. Other signals in the ${ }^{1} \mathrm{H} \mathrm{nmr}$ spectrum are due to N-methyl $(\delta 4.0, \mathrm{~s}, 3 \mathrm{H})$ and n-propyl $\left[\delta 1.0\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.6\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.6(\mathrm{t}\right.$, $\left.\left.2 \mathrm{H}, \mathrm{CH}_{2}\right)\right] .{ }^{13} \mathrm{C}$ nmr spectrum of $\mathbf{3 a}$ showed a total of ten signals. They include signals in the downfield region due to two carbonyl carbons ($\delta 168.6$ and 161.7) and three carbons of pyrazole nucleus ($\delta 148.6,125.1$ and 121.6). In the upfield region, the five signals at $\delta 13.3,21.5,26.4,38.2$ and 45.3 are due to n-propyl, N -methyl and N -methylene carbons. Thus, in the Raney nickel reduction of nitropyrazolylglycine derivative 2a at 75 psi pressure, initially formed aminopyrazolylglycine intermediate 4 is undergoing concomitant dehydrocylisation under the reaction conditions to provide the pyrazolodiazepine dione $\mathbf{3 a}$ in one

Scheme 1

Compds. $\mathbf{2}$ and $\mathbf{3}$	\mathbf{a}	\mathbf{b}	\mathbf{c}	d	e
R					
R^{1}	CH_{3}	CH_{3}	CH_{3}	CH_{3}	$\mathrm{C}_{2} \mathrm{H}_{5}$
	H	CH_{3}	CH_{3}		

step. To verify this, compound 2a was subjected to Raney Ni reduction under mild conditions (at atmospheric pressure) and open chain intermediate 4 was isolated as the product. Compound $\mathbf{4}$ smoothly cyclised into $\mathbf{3 a}$ in the presence of 1,3-dicyclohexylcarbodiimide.
Three other α-aminoacids, L-alanine, L-valine and Lphenylalanine furnished the corresponding pyrazolodiazepines 3b-d in good yields (Scheme-1). 1-Ethyl pyrazole derivative 1b provided the corresponding pyrazolodiazepine derivative $\mathbf{3 e}$ by participating in reaction with glycine through a similar synthetic sequence. A similar two step synthetic operation starting from $\mathbf{1 a} / \mathbf{1} \mathbf{b}$ and L-proline yielded novel fused tricyclic compounds, pyrazolo[4,3-e]-pyrrolo[1,2-a]diazepin-5,10-diones 3f-g (Scheme-2).

Condensation of 1-alkyl-4-amino-3-n-propylpyrazole-5carboxamide 5a/5b with oxalyl chloride in dichloromethane in the presence of pyridine directly yielded 1 -alkyl-3-n-propyl-1,4,5,6,7,8-hexahydropyrazolo[4,3-e]-[1,4]diazepin-5,6,8-triones 6a/6b (Scheme-3). All the pyrazolodiazepines were characterized based on their ir, mass and ${ }^{1} \mathrm{H} \mathrm{nmr}$ spectral data (Table-1).

Conclusion.
Thus, we have provided a facile new entry to pyrazolo $[4,3-e][1,4]$ diazepines. Novel fused tricyclic compounds, pyrazolo[4,3-e]pyrrolo[1,2-a]diazepines were obtained by this synthetic procedure.

Scheme 2

Table 1
Physical and Spectral Data of 2-(1-Alkyl-4-nitro-3-n-propyl-1 H-pyrazolyl-5-carboxamido)substituted Carboxylic Acids 2, Pyrazolodiazepindiones 3 and Pyrazolodiazepintriones 6

Compd. No.	m.p. $\left({ }^{\circ} \mathrm{C}\right)$	Yield (\%)	ir	${ }^{1} \mathrm{H} \mathrm{nmr}$	$\begin{gathered} \text { MS (m/z) } \\ \left(\mathrm{M}^{+}\right) \end{gathered}$
2 a	174	85	$\begin{aligned} & 3246 \\ & 1725 \\ & 1654 \end{aligned}$	$\begin{aligned} & 1.0\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.7\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.85(\mathrm{t}, 2 \mathrm{H}, \\ & \left.\mathrm{CH}_{2}\right), 3.9\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{~N}-\mathrm{CH}_{3}\right), 4.1\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~N}-\mathrm{CH}_{2}\right), 8.9 \\ & \text { (br s, 1H NH) } \end{aligned}$	270
2 b	139	83	$\begin{aligned} & 3306 \\ & 1709 \\ & 1650 \end{aligned}$	$\begin{aligned} & 1.0\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.6\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.4(\mathrm{~d}, 3 \mathrm{H}, \\ & \left.\mathrm{CH}_{3}\right), 2.7\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.0\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{~N}-\mathrm{CH}_{3}\right), 4.4(\mathrm{~m}, \\ & 1 \mathrm{H}, \mathrm{CH}), 8.5(\mathrm{brs} \mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) \end{aligned}$	284
2 c	78	76	$\begin{aligned} & 3271 \\ & 1725 \\ & 1646 \end{aligned}$	$\begin{aligned} & 1.0\left(\mathrm{~m}, 9 \mathrm{H}, 3 \times \mathrm{CH}_{3}\right), 1.8\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH} \text { and } \mathrm{CH}_{2}\right) \text {, } \\ & 2.85\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{~N}-\mathrm{CH}_{3}\right), 4.7(\mathrm{~m}, 1 \mathrm{H} \text {, } \\ & \mathrm{CH}), 8.4(\mathrm{~d}, \mathrm{H}, \mathrm{NH}) \end{aligned}$	312
2d	183	71	$\begin{aligned} & 3268 \\ & 1703 \\ & 1654 \end{aligned}$	$1.0\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.7\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.8(\mathrm{t}, 2 \mathrm{H}$, CH_{2}), $3.2\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{2}\right), 4.0\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 4.2$ (m, 1H, CH), 7.2 (m, 5H, Ar-H), 8.0 (br d, 1 H , NH)	360
2 e	160	81	$\begin{aligned} & 3247 \\ & 1721 \\ & 1662 \end{aligned}$	$0.95\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.35\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{N}-\mathrm{C}-\mathrm{CH}_{3}\right), 1.6(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CH}_{2}$), $2.4\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.1\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}\right), 4.3$ ($\mathrm{q}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}$), $8.6(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH})$	284
2 f	55	71	$\begin{aligned} & 1734 \\ & 1654 \end{aligned}$	$1.0\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.8\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.2-2.6(\mathrm{~m}, 4 \mathrm{H}$, CH_{2} and two pyrrolidine protons), 2.9 ($\mathrm{m}, 2 \mathrm{H}$, CH_{2}), $3.4(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.9\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 4.8(\mathrm{t}, 1 \mathrm{H}$, $\mathrm{C}_{5}-\mathrm{H}$), 8.9 (br s, $1 \mathrm{H}, \mathrm{OH}$)	310
2g	48	76	$\begin{aligned} & 1725 \\ & 1651 \end{aligned}$	$1.0\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.45\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{N}-\mathrm{C}-\mathrm{CH}_{3}\right), 1.7(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.1\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.2(\mathrm{~m}, 1 \mathrm{H}), 2.4(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{CH}$ and $\left.\mathrm{CH}_{2}\right), 2.8(\mathrm{~m}, 2 \mathrm{H}), 4.2\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 4.8 (m, 1H, NH), 9.8 (br s, 1H, OH)	324

Table 1 (continued)

Compd. No.	m.p. $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { Yiel } \\ \mathrm{d} \\ (\%) \end{gathered}$	ir	${ }^{1} \mathrm{H} \mathrm{nmr}$	$\begin{gathered} \mathrm{MS}(\mathrm{~m} / \mathrm{z}) \\ \left(\mathrm{M}^{+}\right) \end{gathered}$	CHNAnalysis
3a	199 [a]	81	$\begin{aligned} & 3178 \\ & 3070 \\ & 1689 \\ & 1669 \end{aligned}$	$1.0\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.6\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.6\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 4.0 (s, 3H, N-CH $)^{2}$, 3.6 (d, 2H, N-CH), 8.3 (br s, 1H, NH), 10.1 (br s, 1H, NH)	222	$\begin{aligned} & \text { Calcd: C, } 54.04 ; \mathrm{H}, \\ & 6.35 ; \text { N, } 25.21 . \\ & \text { Found: C, } 54.19 ; \text { H, } \\ & 6.33 ; \text { N, } 25.29 . \end{aligned}$
3b	215 [a]	78	$\begin{aligned} & 3326 \\ & 3155 \\ & 1699 \\ & 1669 \end{aligned}$	$1.0\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.7\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.4\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $2.7\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.0\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 4.6(\mathrm{~m}, 1 \mathrm{H}$, CH), 7.4 (br s, 1H, NH), 7.9 (br s, 1H, NH)	236	$\begin{aligned} & \text { Calcd: C, } 54.92 ; \mathrm{H}, \\ & \text { 6.83; N, 23.71. } \\ & \text { Found: C, 55.11; H, } \\ & \text { 6.82; N, 23.78. } \end{aligned}$
3c	159 [a]	75	$\begin{aligned} & 3271 \\ & 3108 \\ & 1703 \\ & 1696 \end{aligned}$	$1.1\left(\mathrm{~m}, 9 \mathrm{H}, 3 \times \mathrm{CH}_{3}\right), 1.7\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.3(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}), 2.9\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.0\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 4.6(\mathrm{~d}$, 1H, CH), $8.0(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}), 8.3(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH})$	264	$\begin{aligned} & \text { Calcd: C, 59.07; H, } \\ & 7.63 ; \text { N, 21.20. } \\ & \text { Found: C, 59.24; H, } \\ & 7.61 ; \text { N, 21.27. } \end{aligned}$
3d	89 [a]	69	$\begin{aligned} & 3281 \\ & 3095 \\ & 1697 \\ & 1649 \end{aligned}$	$0.9\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.7\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.6\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 3.1 (d, 2H, Ar-CH2), 3.6 (m, 1H, CH), 4.0 (s, 3H, NCH_{3}), 7.3 (m,5H, Ar-H), 8.6 (br s, 1H, NH), 10.2 (brs, $1 \mathrm{H}, \mathrm{NH}$)	312	$\begin{aligned} & \text { Calcd: C, } 65.37 ; \mathrm{H}, \\ & \text { 6.45; N, 17.94. } \\ & \text { Found: C, 65.53; H, } \\ & \text { 6.44; N, 17.99. } \end{aligned}$
3 e	163 [a]	77	$\begin{aligned} & 3324 \\ & 3153 \\ & 1694 \\ & 1666 \end{aligned}$	$1.0\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.4\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{N}-\mathrm{C}-\mathrm{CH}_{3}\right), 1.7(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), $2.6\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.8\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}\right), 4.4(\mathrm{q}$, $2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}$), 7.5 (br, t, $\left.1 \mathrm{H}, \mathrm{NH}\right), 9.3(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH})$	236	$\begin{aligned} & \text { Calcd: C, 55.92; H, } \\ & \text { 6.83; N, 23.71. } \\ & \text { Found: C, 56.09; H, } \\ & \text { 6.83; N, 23.77. } \end{aligned}$
$3 f$	183 [a]	80	$\begin{aligned} & 3160 \\ & 1684 \\ & 1653 \end{aligned}$	$1.0\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.6\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.6(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), [2.0 ($\mathrm{br} \mathrm{s}, 3 \mathrm{H}$), $2.8(\mathrm{~m}, 1 \mathrm{H}), 3.6(\mathrm{~m}, 2 \mathrm{H}), 4.1$ ($\mathrm{m}, 1 \mathrm{H}$, due to pyrrolidine protons)], 4.0 (s, $3 \mathrm{H}, \mathrm{N}$ CH_{3}), 9.4 (br s, 1H, NH)	262	$\begin{aligned} & \text { Calcd: C, } 59.53 ; \mathrm{H}, \\ & \text { 6.92; N, 21.36. } \\ & \text { Found: C, 59.68; H, } \\ & 6.90 ; \text { N, 21.43. } \end{aligned}$
3g	164 [a]	83	$\begin{aligned} & 3169 \\ & 1683 \\ & 1644 \end{aligned}$	$1.0\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.4\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{N}-\mathrm{C}-\mathrm{CH}_{3}\right), 1.7(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), $2.7\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$), [2.0 (br s, 3H), $2.8(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 3.6 (br s, 2H), 4.1 (br d, 1H pyrrolidine protons)], $4.4\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}\right), 9.8$ (br s, 1H, NH)	276	$\begin{aligned} & \text { Calcd: C, } 60.85 ; \mathrm{H}, \\ & 7.30 ; \mathrm{N}, 20.28 . \\ & \text { Found: C, } 60.96 ; \mathrm{H}, \\ & 7.31 ; \mathrm{N}, 20.32 . \end{aligned}$
6 a	297 [b]	84	$\begin{aligned} & 3292 \\ & 1698 \\ & 1672 \\ & 1691 \end{aligned}$	$1.0\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.7\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{3}\right), 2.5\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 4.0 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}$), 7.6 (br s, $1 \mathrm{H}, \mathrm{NH}$), 10.5 (br s, $1 \mathrm{H}, \mathrm{NH}$)	236	$\begin{aligned} & \text { Calcd: C, 50.84; H, } \\ & 5.12 ; \text { N, } 23.72 . \\ & \text { Found: C, 50.93, H, } \\ & 5.11 ; \text { N, 23.79. } \end{aligned}$
6 b	265 [c]	80	$\begin{aligned} & 3253 \\ & 1691 \\ & 1662 \\ & 1623 \end{aligned}$	$1.0\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), \mathrm{I} .4\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{~N}-\mathrm{C}-\mathrm{CH}_{3}\right), 1.6(\mathrm{~m}, 2 \mathrm{H},$ CH_{2}), $2.4\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.3\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}\right), 7.5(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), 10.1 (br s, 1H, NH)	250	$\begin{aligned} & \text { Calcd: C, 52.79; H, } \\ & 5.64 ; \text { N, 22.39. } \\ & \text { Found: C, 52.90; H, } \\ & 5.62 ; \text { N, 22.44. } \end{aligned}$

Solvent used for recrystallization: [a] ethyl acetate: n-hexane; [b] methanol:ethyl acetate; [c] methanol.

EXPERIMENTAL
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C} \mathrm{nmr}$ spectra were recorded on a Varian Gemini (300 and 100 MHz respectively) nmr spectrometer at ambient temperature using TMS as internal standard. Mass spectrometry (70 eV) was carried out on a Perkin-Elmer Hitachi RMU-6 L
instrument. IR spectra were obtained in KBr pellets on a Shimadzu 435 instrument. Elemental Analysis was carried out on Perkin-Elmer 2400 S CHN analyzer. Melting points were determined in capillaries using Polman digital melting point apparatus (Model-mp-96). Reagents and solvents were of analytical grade. Solvents were dried before use.

2-(1-Alkyl-4-nitro-3-n-propyl-1H-pyrazolyl-5-carboxamido)substituted Carboxylic Acids (2a-g).

General Procedure.
A mixture of 1-alkyl-4-nitro-3-n-propyl pyrazolyl-5-carboxylic acid $\mathbf{1 a} / \mathbf{1 b}$ [8] (0.01 mol) and thionyl chloride $(10 \mathrm{~mL})$ in benzene (10 mL) was refluxed for 3 h . The reaction mixture was cooled and excess thionyl chloride was removed in vacuo. The oily residue was dissolved in benzene (10 mL) and this acid chloride was cautiously added to the appropriate α-amino acid (0.011 $\mathrm{mol})$ in 10% aq. KOH solution (20 mL) at $10-20^{\circ} \mathrm{C}$ and reaction mixture was stirred for 15 min . The organic layer was separated
and aqueous layer was acidified with $2 N \mathrm{HCl}(10 \mathrm{~mL})$ and extracted with ethyl acetate ($2 \times 25 \mathrm{~mL}$). Ethyl acetate solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated and the resulting carboxylic acid derivative 2 was recrystallised from ethyl acetate/hexane.

1-Alkyl-6-substituted-3-n-propyl-1,4,5,6,7,8-hexahydropyrazolo-[4,3-e][1,4]diazepin-5,8-diones (3a-g).

General Procedure.
To a solution of $\mathbf{2}(5 \mathrm{mmol})$ in methanol $(25 \mathrm{~mL})$ was added Raney nickel (0.5 g) and reaction mixture was placed under a hydrogen atmosphere (75 psi) in a Paar hydrogenation apparatus for $4-5 \mathrm{~h}$, and then filtered through a celite bed. The catalyst was washed with methanol (15 mL) and combined filtrates were evaporated to dryness in vacuo. The resulting residue was taken in $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and extracted with ethyl acetate ($3 \times 25 \mathrm{~mL}$). The organic extracts were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the corresponding pyrazolodiazepine dione derivative 3a-g which was recrystallised from appropriate solvent.
2-(4-Amino-1-methyl-3-n-propyl-1 H -pyrazolyl-5-carboxamido) Acetic Acid (4).

To a solution of 2-(1-methyl-4-nitro-3-n-propyl-1H-pyra-zolyl-5-carboxamido) acetic acid 2a ($2.7 \mathrm{~g}, 5 \mathrm{mmol}$) in methanol (25 mL), was added Raney nickel (0.5 g) and reaction mixture was placed under a hydrogen atmosphere at atmospheric pressure for 4 h and then filtered through a celite bed. The catalyst was washed with methanol $(10 \mathrm{~mL})$ and the combined filtrates were evaporated to dryness in vacuo. The resulting residue was taken in water $(25 \mathrm{~mL})$ and extracted with chloroform ($3 \times 25 \mathrm{~mL}$). The organic extracts were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. Recrystallisation of the residue from benzene gave compound 4, yield 72%, m.p. $124{ }^{\circ} \mathrm{C}$. MS: m/e $240 \mathrm{M}^{+}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 3510, 3366, 3234, 1727, 1646; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 1.0(\mathrm{t}, 3 \mathrm{H}$, CH_{3}), $1.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.6\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.8-4.2(\mathrm{br} \mathrm{m}, 7 \mathrm{H}$, $\mathrm{N}-\mathrm{CH}_{3}, \mathrm{~N}-\mathrm{CH}_{2}, \mathrm{NH}_{2}$), 8.8 (s, $1 \mathrm{H}, \mathrm{NH}$).

Cyclisation of 2-(4-Amino-1-methyl-3-n-propyl-1H-pyrazolyl-5carboxamido) Acetic Acid (4).

A solution of $\mathbf{4}(0.01 \mathrm{~mol})$ and catalytic amount of 4-dimethylamino pyridine in dichloromethane (20 mL) was cooled to $0^{\circ} \mathrm{C}$.

Solution of DCC ($2.06 \mathrm{~g}, 0.01 \mathrm{~mol}$) in dichloromethane was added drop wise to the above solution over a period of 10 min while maintaining the temperature at $0-5{ }^{\circ} \mathrm{C}$. After the addition, the solution was stirred for an additional period of 5 min and the temperature was allowed to rise to room temperature over a period of 1 h . Separated urea derivative was filtered, washed with dichloromethane (15 mL), combined organic layers were washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo. The residue was triturated with n-hexane and the resulting solid was recrystallised from ethyl acetate to give pyrazolo[4,3-e][1,4]diazepin5,8 -dione derivative 3a, yield 68%, m.p. $19{ }^{\circ} \mathrm{C}$.
1-Methyl/ethyl-3-n-propyl-1,4,5,6,7,8-hexahydropyrazolo[4,3-e]-[1,4]diazepin-5,6,8-trione ($\mathbf{6 a / b}$).

General Method.

To a solution of 4-amino-1-alkyl-3-n-propyl pyrazolyl-5-carboxamide $5 \mathbf{a} / \mathbf{b}(0.01 \mathrm{~mol})$ in dichloromethane $(40 \mathrm{~mL})$ and pyridine (2 mL), oxalyl chloride ($1.3 \mathrm{~g}, 0.011 \mathrm{~mol}$) was added drop wise and reaction mixture was stirred at room temperature for 3 h . 1-Alkyl-3-n-propyl-1,4,5,6,7,8-hexahydropyrazolo[4,3-e][1,4]-diazepin- $5,6,8$-trione $6 \mathrm{a} / \mathrm{b}$ separated out from the clear solution, which was collected by filtration, washed with water ($2 \times 30 \mathrm{~mL}$) and recrystallised from suitable solvent.

REFERENCES AND NOTES

* To whom correspondence should be addressed.
[1] J. A. Vida, Medicinal Chemistry, Part III, M. W. Wolf, I. W. Burger, John

Wiley \& Sons, New York 1981, pp. 787.
[2] F. J. Tinney, J. P. Sanchez and J. A. Noas, J. Med. Chem., 17, 624 (1974).
[3] A. Edenhofer, Helv. Chem. Acta., 58, 2192 (1975).
[4] L. Fontanella, L. Mariani, G. Tarzia and N. Corsico, Eur. J. Med. Chem., 11, 217 (1976).
[5] R. Jaunin, Helv. Chem. Acta., 57, 1934 (1974).
[6] H. A. DeWald, I. C. Nordin, Y. J. L' Italien and R. F. Parcel, J. Med. Chem., 16, 1346 (1973).
[7] H. A. DeWald, S. Lobbestael and B. P. H. Poschel, J. Med. Chem., 24, 982, (1981).
[8] J. Fray, D. J. Bull, K. Cooper, M. J. Parry and M. H. Stefaniak, J. Med. Chem., 38, 3524 (1995).

